Frequent, phylogenetically local horizontal transfer of the cox1 group I Intron in flowering plant mitochondria.
نویسندگان
چکیده
Horizontal gene transfer is surprisingly common among plant mitochondrial genomes. The first well-established case involves a homing group I intron in the mitochondrial cox1 gene shown to have been frequently acquired via horizontal transfer in angiosperms. Here, we report extensive additional sampling of angiosperms, including 85 newly sequenced introns from 30 families. Analysis of all available data leads us to conclude that, among the 640 angiosperms (from 212 families) whose cox1 intron status has been characterized thus far, the intron has been acquired via roughly 70 separate horizontal transfer events. We propose that the intron was originally seeded into angiosperms by a single transfer from fungi, with all subsequent inferred transfers occurring from one angiosperm to another. The pattern of angiosperm-to-angiosperm transfer is biased toward exchanges between plants belonging to the same family. Illegitimate pollination is proposed as one potential factor responsible for this pattern, given that aberrant, cross-species pollination is more likely between close relatives. Other potential factors include shared vectoring agents or common geographic locations. We report the first apparent cases of loss of the cox1 intron; losses are accompanied by retention of the exonic coconversion tract, which is located immediately downstream of the intron and which is a product of the intron's self-insertion mechanism. We discuss the many reasons why the cox1 intron is so frequently and detectably transferred, and rarely lost, and conclude that it should be regarded as the "canary in the coal mine" with respect to horizontal transfer in angiosperm mitochondria.
منابع مشابه
Explosive invasion of plant mitochondria by a group I intron.
Group I introns are mobile, self-splicing genetic elements found principally in organellar genomes and nuclear rRNA genes. The only group I intron known from mitochondrial genomes of vascular plants is located in the cox1 gene of Peperomia, where it is thought to have been recently acquired by lateral transfer from a fungal donor. Southern-blot surveys of 335 diverse genera of land plants now s...
متن کاملReevaluation of the cox1 group I intron in Araceae and angiosperms indicates a history dominated by loss rather than horizontal transfer.
The origin and modes of transmission of introns remain matters of much debate. Previous studies of the group I intron in the angiosperm cox1 gene inferred frequent angiosperm-to-angiosperm horizontal transmission of the intron from apparent incongruence between intron phylogenies and angiosperm phylogenies, patchy distribution of the intron among angiosperms, and differences between cox1 exonic...
متن کاملSeparate Origins of Group I Introns in Two Mitochondrial Genes of the Katablepharid Leucocryptos marina
Mitochondria are descendants of the endosymbiotic α-proteobacterium most likely engulfed by the ancestral eukaryotic cells, and the proto-mitochondrial genome should have been severely streamlined in terms of both genome size and gene repertoire. In addition, mitochondrial (mt) sequence data indicated that frequent intron gain/loss events contributed to shaping the modern mt genome organization...
متن کاملThe Agaricus bisporus cox1 Gene: The Longest Mitochondrial Gene and the Largest Reservoir of Mitochondrial Group I Introns
In eukaryotes, introns are located in nuclear and organelle genes from several kingdoms. Large introns (up to 5 kbp) are frequent in mitochondrial genomes of plant and fungi but scarce in Metazoa, even if these organisms are grouped with fungi among the Opisthokonts. Mitochondrial introns are classified in two groups (I and II) according to their RNA secondary structure involved in the intron s...
متن کاملDynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates.
We summarize our recent studies showing that angiosperm mitochondrial (mt) genomes have experienced remarkably high rates of gene loss and concomitant transfer to the nucleus and of intron acquisition by horizontal transfer. Moreover, we find substantial lineage-specific variation in rates of these structural mutations and also point mutations. These findings mostly arise from a Southern blot s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 25 8 شماره
صفحات -
تاریخ انتشار 2008